Who is Looking After Mom and Dad? Unregulated Workers in Canadian Long-Term Care Homes

Carole A. Estabrooks, Janet E. Squires, Heather L. Carleton, Greta G. Cummings and Peter G. Norton

Canadian Journal on Aging / La Revue canadienne du vieillissement / FirstView Article / December 2014, pp 1 - 13
DOI: 10.1017/S0714980814000506, Published online: 19 December 2014

Link to this article: http://journals.cambridge.org/abstract_S0714980814000506

How to cite this article:

Request Permissions : Click here
Who is Looking After Mom and Dad? Unregulated Workers in Canadian Long-Term Care Homes*

Carole A. Estabrooks,1 Janet E. Squires,2 Heather L. Carleton,1 Greta G. Cummings,1 and Peter G. Norton3

RÉSUMÉ
Les personnes âgées recevant soins de longue durée ou soins infirmiers résidentiels ont des besoins de plus en plus complexes, y compris exhibitant plus de la démence que dans le passé, mais on ne connaît que peu en ce qui concerne la population non réglementée qui fournit leurs soins. Nous avons interrogé 1 381 aides dans un échantillon représentatif de 30 maisons de soins infirmiers en milieu urbain dans les trois provinces des Prairies canadiennes afin de signaler des caractéristiques démographiques, la santé et le bien-être, et des caractéristiques liées au travail. Plus de 50 pour cent des répondants ne sont pas nés au Canada et ne parlaient pas l'anglais comme leur première langue. Ils ont signalé des niveaux d'épuisement modérément élevés et un sentiment fort de la valeur de leur travail. Peu de répondants ont déclaré avoir participé à des séances de formation. Cette main d'œuvre composée de fournisseurs de soins directs est mal comprise, leur formation et les normes pour l'emploi sont limitées, et la formation varie considérablement d’une province à l’autre. Les caractéristiques du lieu de travail qui touchent aux aidants reflètent des facteurs qui favorisent l’épuisement professionnel dans les professions connexes de la santé, avec des implications pour la qualité des soins, pour la santé du personnel et pour leur rétention.

ABSTRACT
Older adults living in residential long-term care or nursing homes have increasingly complex needs, including more dementia than in the past, yet we know little about the unregulated workforce providing care. We surveyed 1,381 care aides in a representative sample of 30 urban nursing homes in the three Canadian Prairie provinces and report demographic, health and well-being, and work-related characteristics. Over 50 per cent of respondents were not born in Canada and did not speak English as their first language. They reported moderately high levels of burnout and a strong sense of their work’s worth. Few respondents reported attending educational sessions. This direct caregiver workforce is poorly understood, has limited training or standards for minimum education, and training varies widely across provinces. Workplace characteristics affecting care aides reflect factors that precipitate burnout in allied health professions, with implications for quality of care, staff health, and staff retention.

Faculty of Nursing, University of Alberta
Ottawa Hospital Research Institute and School of Nursing, University of Ottawa
Department of Family Medicine, University of Calgary

The research was funded by the Canadian Institutes of Health Research (MOP #53107). The TREC Team at the time of the study included: Carole Estabrooks (PI); Investigators: Greta G. Cummings, Lesley Degner, Sue Dopson, Heather Laschinger, Kathy McGilton, Verena Menec, Debra Morgan, Peter Norton, Joanne Profetto-McGrath, Jo Rycroft-Malone, Malcolm Smith, Norma Stewart, and Gary Teare; Decision-makers: Caroline Clarke, Greta Lynn Ell, Belle Gowriluk, Sue Neville, Corinne Schalm, Donna Stelmachovich, Gina Trinidad, Juanita Tremeer, and Luana Whitbread; Collaborators: David Hogan, Chuck Humphrey, Michael Leiter, and Charles Mather; Special advisors: Judy Birdsell, Phyllis Hempel (deceased), Jack Williams, and Dorothy Pringle (Chair, Scientific Advisory Committee).

The authors thank the care aides for their participation and their managers for providing the time to participate. We also thank Youn Young Choi and Sung Hyun Kang for data management and analysis, Christian Rochefort for assistance with interpreting Quebec data, and Ferenc Toth for assistance with preparation of the manuscript.

Manuscript received: / manuscrit reçu : 30/08/13
Manuscript accepted: / manuscrit accepté : 17/03/14

Mots clés : vieillissement, aides de soins, soins a longue durée, main d’œuvre de services de santé non-réglementé

Keywords: aging, care aides, long-term care, nursing homes, personal care workers, unregulated healthcare workforce
This article describes the workforce providing the majority of direct care to the frail elderly in nursing homes. We report on health, well-being, job and continuing education characteristics of this workforce and discuss policy and management implications that arise. The current lack of information about the numbers and characteristics of this occupational group reduces our ability to undertake effective workforce planning and to monitor progress toward achieving workforce improvements that result in acceptable quality of care. Our research question on the current characteristics of the care aide workforce in long term care (LTC) homes illuminates effective routes to modify those characteristics. This analysis highlights factors that, if modified, could significantly improve quality of care and quality of life for LTC residents, and quality of work life for care aides.

By 2036, the number of Canadians 65 and older will more than double to 10.4 million, with growth most rapid in those over 75 years of age (Statistics Canada, 2010). After age 65, age-related dementias (ARDs) and other neurodegenerative diseases begin to take their greatest toll on quality of life and produce the greatest proportional costs to the health system. Presently, one in 40 Canadians aged 65–74 and one in three Canadians over age 85 have ARD (Canadian Institutes of Health Research, 2010). By 2038, 1.125 million Canadians, or 2.8 per cent of the population, are projected to have an ARD (Alzheimer Society of Canada, 2010). Recent prevalence figures in the United States are higher (Alzheimer’s Association, 2013). In the United States, 70 per cent of people with dementia die in a nursing home (Mitchell, Teno, Miller, & Mor, 2005); in Europe, this figure ranges from 50 per cent (Wales) to 92 per cent (Netherlands) (Houttekier et al., 2010). As the number of older adults with dementia increases, so will the need for supportive living and residential long-term care, without dramatic breakthroughs in either prevention or treatment of ARD. Recent Canadian projections estimate that the need for LTC beds will rise 10-fold by 2038 (Alzheimer Society of Canada).

In addition to being in greater demand, residential LTC facilities (nursing homes) in Canada have become more complex care environments (Hirdes, Mitchell, Maxwell, & White, 2011). Increasingly, older adults are admitted later in the trajectories of their dementia and other chronic diseases and are thus more dependent, with more-complex needs and in a greater state of vulnerability. Few new residents to long-term care have low care needs (Ikegami, Morris, & Fries, 1997; Mor et al., 2007) while 60 per cent have significant and often co-morbid care challenges (Doupe et al., 2012); more than 70 per cent have an ARD (Doupe et al., 2011; Gruber-Baldini et al., 2009). These residents with their advancing age, loss of family and other supports, and their severe communication difficulties are among our most vulnerable and at-risk citizens.

In Canada, there is no national education standard for care aides to enter practice (Berta, Laporte, Deber,
Unregulated Workers in Long-Term Care Homes

Methods

All data were collected within the Translating Research in Elder Care (TREC) study, a five-year research program seeking to identify modifiable features of organizational context that are associated with better resident and staff outcomes in LTC home settings (Estabrooks, Hutchinson, et al., 2009; Estabrooks, Squires, Cummings, Teare, & Norton, 2009). The breadth and depth of the TREC data collection makes possible secondary studies such as ours that ask a defined research question about a select subset of the TREC data.

Sampling and Measures (Nursing Homes)

TREC is situated in 36 nursing homes (30 urban, six rural) in Alberta, Saskatchewan, and Manitoba. All nursing homes that met the TREC inclusion criteria were eligible to participate (Estabrooks et al., 2009). The TREC team selected nursing homes using stratified (health region, owner-operator model, size) random sampling in order to ensure representation of these dimensions in our sample. For this study, we used data from the 30 urban LTC homes. LTC homes fell into three categories of owner-operator models: (1) public – a facility supported primarily through public funds, owned and operated by the local government; (2) voluntary – a facility run by a voluntary, cultural, or religious organization; and (3) private (for profit) – a facility in which the individuals or agency in control receive compensation (other than wages, rent, or other expenses) for the services they provide. Our sample of urban LTC homes included 22 small homes (35 to 149 beds) and 8 large homes (≥150 beds). We report here on data collected in 2009–2010.

Sampling and Data Collection (Care Aides)

Care aides completed the TREC survey, a suite of instruments designed to measure (a) demographic characteristics, (b) organizational context, (c) use of best practices, (d) staff outcomes, and (e) factors believed to influence the use of best practices. To sample, we used a census of eligible care aides. All care aides who met the inclusion criteria (see Table 2) were invited to participate in the survey, and we collected data from all who accepted the invitation (Estabrooks et al., 2009). Trained data collectors administered the survey to care aides using computer-assisted, structured personal interviews (Squires et al., 2012). Care managers and facility administrators completed unit and facility surveys respectively.

Care Aide Measures

In this article, we report on the following variables collected in our study from care aides: demographics, work-related variables, health status and burnout, and continuing education.
Work-Related Variables
We measured (a) job and vocational satisfaction, and (b) whether care aides had enough orientation and job knowledge. We did so by using single items scored on a five-point Likert agreement scale ranging from strongly disagree (1) to strongly agree (5). These single items have produced consistent findings in our previous pilot work with care aides (Boström, Squires, Mitchell, Sales, & Estabrooks, 2012) and past studies with nurses (Estabrooks, Squires, Adachi, Kong, & Norton, 2008; Squires et al., 2013) indicating reliability.

Dementia-Related Responsive Behaviours
We measured these behaviours, exhibited towards staff by residents, by using six items (threat of assault, emotional abuse, physical abuse, verbal sexual harassment, sexual assault, and forced sexual intercourse). Each item was scored as yes or no.

Health Status
The SF-8™ health survey (Ware, Kosinski, Dewey, & Gandek, 2001) assesses mental and physical health status using eight items. The eight items have been selected from pools of empirically tested items, and
scored on the same norm-based metric as the original larger SF-36® scale (Carr, 2003). Responses were on a five- or six-point scale. Scoring was done using a proprietary algorithm obtained when permission to use the scale was granted us.

Burnout
The Maslach Burnout Inventory General Survey (MBI-GS) (Maslach & Jackson, 1981; Maslach, Jackson, & Leiter, 1996) has three subscales (emotional exhaustion, cynicism, job efficacy). The original MBI-GS contained 16 items. In this study, we used the MBI-GS (short form), which consists of nine items (three items for each of the three subscales, each scored on a seven-point Likert scale). The mean was taken for each subscale. A low risk for burnout is reflected by one or more of the following: emotional exhaustion score of < 1.67, cynicism < 1.00, and efficacy > 4.00. A high risk for burnout is reflected by one or more of the following: emotional exhaustion > 3.00, cynicism > 2.33, and efficacy < 3.30.

Continuing Education
Care aides were asked how often they attended in-services, workshops, or courses in the past year, and managers were asked if there were one or more clinical educators in the facility.

Additional details on each of these variables are presented in Additional File 1.

Statistical Analyses
We calculated means and standard deviations for interval data and frequency counts and proportions for categorical data. To assess differences between provinces, owner-operator models (private, public, voluntary), and facility size (small, medium, large) on categorical and interval-level variables, we used contingency chi-square tests and one-way ANOVA respectively with a post-hoc test (Bonferroni correction for interval-level variables; e.g., years worked as a care aide, and binary or multinomial logistic regression for categorical variables; e.g., age). To assess for a possible province effect, we calculated statistical significance (using ANOVA p value and effect size) of all work-related and staff outcome variables before and after adjusting for three factors: sex, education (care aide certificate), and whether the care aide was born in Canada.

We were also interested to observe if any one of these three sampling dimensions (province, owner-operator model, facility size) were more strongly associated with the three educational and/or professional development opportunities for care aides that were available to us. To determine this possible association, we conducted two-level individual logistic regressions (one model for having a care aide certificate and one for in-services attended) using each of our three educational variables as dependent variables) that controlled for the three sampling dimensions. We compared these same sampling dimensions using the presence of a clinical educator (facility level) with Fisher’s exact test.

Ethics
Ethics approvals were obtained from the research ethics boards of all investigator-affiliated universities. Operational approvals were obtained from participating organizations.

Results

Sample Characteristics
A total of 1,381 health care aides (representing approximately 70% of those eligible to participate during the period in which we collected data in each facility) completed the TREC survey in year two (July 2009–June 2010) (see Table 3). The majority (n = 837, 60.6%) were from Alberta, followed by Manitoba (n = 336, 24.3%) and Saskatchewan (n = 208, 15.1%). Many worked primarily day shifts (665, 48.2%), with 548 (39.7%) working evening shifts and 168 (12.2%) working night shifts. Just over half of the sample reported speaking English as their first language. We found statistically significant differences between provinces on all demographic characteristics with the exception of age and whether the care aide had completed a high school diploma. Select (but fewer) demographic variables also differed by owner-operator model (e.g., being born in Canada, hours worked in two weeks, and years on unit) and facility size (sex, first language spoken, and being born in Canada) (See Additional File 2).

Work-Related Health and Burnout Characteristics
Mean scores by province for the work-related variables and health and well-being outcomes are presented in Table 4; mean scores by owner-operator model and facility size can be found in Additional File 2. The care aides overall reported being satisfied with their job and with being a care aide, and perceived that they had adequate knowledge and orientation to carry out their job. They reported experiencing, on average,
three types of dementia-related responsive behaviours during the last five shifts worked. Mental and physical health subscale scores on the SF-8 health survey were 51.0 (SD = 8.7) and 49.4 (SD = 8.0) respectively. Care aides had moderate risk levels for burnout on two of the three burnout subscales: exhaustion and cynicism. On the third subscale, job efficacy, aides reported unusually high levels (higher is better).

After adjusting for sex, education (care aide certificate), and whether or not the care aide was born in Canada, all variables except physical health status were significantly different between owner-operator model and facility size after adjusting for sex, education (care aide certificate), and whether or not the care aide was born in Canada (see Additional File 2). Cynicism was higher in private facilities than in voluntary or public facilities; cynicism was also higher in medium-sized facilities than in small or large facilities.

Continuing Education

In Table 6, we report three variables related to educational opportunities for care aides. The majority (83.6%) of care aides reported having a care aide certificate while fewer than 50 per cent reported attending in-services, workshops, or courses regularly in the past year. Significant differences between provinces (see Table 6), owner-operator models (see Additional File 2), and facility size (see Additional file 2) were noted with respect to both variables: having a care aide certificate and attending in-service sessions regularly. In addition, most (73.3%) of the TREC nursing homes had a clinical educator; however, significant differences were present only between provinces (28.6% Saskatchewan, 86.7% Alberta, 87.5% Manitoba).
Table 4: Comparison of work-related and health outcomes among care aides by province

<table>
<thead>
<tr>
<th>Variables</th>
<th>Province</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dialysis</td>
<td>Alberta</td>
<td>n = 837</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dialysis</td>
<td>Saskatchewan</td>
<td>n = 208</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dialysis</td>
<td>Manitoba</td>
<td>n = 336</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dialysis</td>
<td>Total</td>
<td>n = 1381</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job satisfaction</td>
<td>4.116 (.796)</td>
<td></td>
<td></td>
<td>3.832 (.941)</td>
<td></td>
<td>4.143 (.735)</td>
<td></td>
<td>4.080 (.812)</td>
<td></td>
<td>< .001</td>
</tr>
<tr>
<td>Vocational satisfaction</td>
<td>4.241 (.765)</td>
<td></td>
<td></td>
<td>4.053 (.902)</td>
<td></td>
<td>4.140 (.796)</td>
<td></td>
<td>4.188 (.797)</td>
<td></td>
<td>.004</td>
</tr>
<tr>
<td>Adequate knowledge</td>
<td>4.203 (.695)</td>
<td></td>
<td></td>
<td>3.894 (.921)</td>
<td></td>
<td>4.080 (.751)</td>
<td></td>
<td>4.127 (.754)</td>
<td></td>
<td>< .001</td>
</tr>
<tr>
<td>Adequate orientation</td>
<td>4.129 (.805)</td>
<td></td>
<td></td>
<td>3.803 (.960)</td>
<td></td>
<td>4.158 (.701)</td>
<td></td>
<td>4.087 (.815)</td>
<td></td>
<td>< .001</td>
</tr>
<tr>
<td>Physical health status</td>
<td>49.628 (8.097)</td>
<td></td>
<td></td>
<td>47.656 (8.533)</td>
<td></td>
<td>49.699 (7.259)</td>
<td></td>
<td>49.346 (7.996)</td>
<td></td>
<td>.004</td>
</tr>
<tr>
<td>Mental health status</td>
<td>51.571 (8.780)</td>
<td></td>
<td></td>
<td>48.357 (8.467)</td>
<td></td>
<td>51.226 (8.216)</td>
<td></td>
<td>50.998 (8.666)</td>
<td></td>
<td>.001</td>
</tr>
<tr>
<td>MBI exhaustion-energy</td>
<td>2.373 (1.631)</td>
<td></td>
<td></td>
<td>2.795 (1.624)</td>
<td></td>
<td>2.652 (1.572)</td>
<td></td>
<td>2.504 (1.624)</td>
<td></td>
<td>.001</td>
</tr>
<tr>
<td>MBI cynicism-involvement</td>
<td>2.049 (1.532)</td>
<td></td>
<td></td>
<td>2.468 (1.730)</td>
<td></td>
<td>2.428 (1.618)</td>
<td></td>
<td>2.203 (1.595)</td>
<td></td>
<td>< .001</td>
</tr>
<tr>
<td>MBI efficacy-inefficacy</td>
<td>5.305 (8.39)</td>
<td></td>
<td></td>
<td>4.945 (1.000)</td>
<td></td>
<td>5.196 (8.885)</td>
<td></td>
<td>5.224 (8.885)</td>
<td></td>
<td>< .001</td>
</tr>
<tr>
<td>Dementia-related responsive behaviours (aggression)</td>
<td>3.038 (1.754)</td>
<td></td>
<td></td>
<td>3.284 (1.462)</td>
<td></td>
<td>3.256 (1.648)</td>
<td></td>
<td>3.128 (1.690)</td>
<td></td>
<td>.048</td>
</tr>
</tbody>
</table>

ES = effect size
MBI = Maslach Burnout Inventory

* Province effect after adjusting for sex, education (care aide certificate), and whether born in Canada.

b Effect size (Cohen’s f): small effect = 0.02, medium effect = 0.15, large effect = 0.35.

c Each variable was asked with a single item, scored on a five-point Likert scale (1 = strongly disagree to 5 = strongly agree).

d Physical and mental health status were measured using the Health Status Short Form (SF-8) which contains eight items. Responses are on a five- or six-point scale, and scoring is done using a proprietary algorithm obtained when permission to use the scale is granted. Higher scores indicate better perceived health status. These figures are an average across age groupings.

* Burnout was measured using the Maslach Burnout Inventory General Survey (MBI-GS), which consists of three subscales (emotional exhaustion, cynicism, job efficacy), each containing three items. All items are scored on a seven-point frequency Likert scale (0 = never to 6 = daily). A mean is calculated for each subscale. High scores on exhaustion and cynicism with low scores on efficacy indicate high risk for burnout.

f Dementia-related responsive behaviour towards staff is measured by asking care aides to report whether or not they have experienced six kinds of responsive behaviours by a resident in their last five shifts. A count of the kinds of responsive behaviours they indicated experiencing is taken for a total score between 0 and 6.

Table 5 presents findings from the logistic regression models that we ran to determine which sampling dimensions of province, owner operator model, and facility size were more strongly associated with having a care aide certificate and attending in-services. Findings show that all three dimensions (province, owner operator model, facility size) were significant predictors of having a care aide certificate as well as attending in-services. Owner-operator model (public vs. voluntary) displayed the strongest beta coefficient in both models. Only province was a significant predictor of a facility’s having a clinical educator in place (see Table 7).

Discussion
We report the first data, to our knowledge, for Canadian nursing home care aides on demographic, health status, burnout, job and vocational satisfaction, and continuing educational opportunities. Care aides in Canadian prairie provinces tend to be middle-aged and older women, with a high school diploma; some have care aide certificate-level education. In urban centers, half of these workers were born outside of Canada and do not speak English as a first language. Care aides in this study report high levels of job and vocational satisfaction. They have mean scores for physical and mental health from the SF-8 survey consistent with U.S. general population norms (Ware, Kosinski, & Keller, 1996). Consistent with other Canadian reports (Boström et al., 2012; Morgan et al., 2005; Morgan et al., 2012), they report regularly experiencing dementia-related responsive behaviours from residents. They are at moderate risk of burnout, consistent with other reports of nurses’ burnout in the literature (Leiter & Maslach, 2009). However, their reported job efficacy – the sense that their work is meaningful and has purpose – is unusually high. This finding is consistent with discussions of

These findings are similar to those reported in the U.S. studies and in several small Canadian studies. However, our sample reported higher educational levels than U.S. samples – 93 per cent of our sample had high school education versus less than 55 per cent in the United States (PHI National, 2011). We believe this is the first study to report the health status of the care aide workforce. Although it is positive that these care aides report high levels of job efficacy in the face of relatively high levels of burnout, their burnout levels are worrisome and are higher than reported levels for regulated workers (e.g., registered nurses) in our larger study (Estabrooks et al., 2012).

Burnout presents a threat to staff and has been the focus of intense research for over 35 years (Schaufeli, Leiter, & Maslach, 2009). Workplace characteristics affecting care aides – such as frequent exposure to dementia-related responsive behaviours, high workload, high acuity of residents, and little time to perform tasks for residents – mirror the environmental factors that are reported to precipitate burnout in allied health professions (Josefsson, Sonde, Winblad, & Robins Wahlin, 2007; Leiter & Maslach, 2009; Stevens, 2008). While no review has yet been published examining burnout in nursing home care aides specifically, burnout in the nursing and allied health professions presents a threat to quality of care, staff health (Kerr, Laschinger, Severin, Almost, & Shamian, 2005), and staff retention (Leiter & Maslach, 2009). Resource constraints, reductions in proportions of regulated nursing care staff, and a resident population with increasingly complex and high medical and social needs are conditions that will continue to be exacerbated as the longer-living baby boomers experience increasing rates of dementia and move through the health care, social, and residential care systems.

Although efforts are underway in most provinces to establish registries and educational strategies for the nursing home care aide workforce and to stabilize the work environment, an acute need exists to accelerate this work. Effective health human resource planning for the sector cannot proceed in Canada until we have the capacity to count these workers and are aware of their qualifications in each provincial jurisdiction. Our lack of information about the numbers and characteristics of this occupational group reduces our ability to monitor change or progress in achieving workforce improvements (Cummings et al., 2013).

From our data, we identified potential areas for improvement. We found significant provincial differences in

Table 5: Logistic regression results

[DV: Care aide certificate^]

<table>
<thead>
<tr>
<th>Variable (Co-variates)</th>
<th>Beta</th>
<th>SE</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>Exp(Beta)</th>
<th>95% CI for Exp(Beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Province: AB^b</td>
<td>−1.524</td>
<td>0.266</td>
<td>32.890</td>
<td>1</td>
<td>.000</td>
<td>0.218</td>
<td>.129 .367</td>
</tr>
<tr>
<td>Province: SK</td>
<td>−1.342</td>
<td>0.281</td>
<td>22.736</td>
<td>1</td>
<td>.000</td>
<td>0.261</td>
<td>.151 .454</td>
</tr>
<tr>
<td>Site size: Small^c</td>
<td>−0.642</td>
<td>0.186</td>
<td>11.968</td>
<td>1</td>
<td>.001</td>
<td>0.526</td>
<td>.366 .757</td>
</tr>
<tr>
<td>Site size: Medium</td>
<td>−0.753</td>
<td>0.215</td>
<td>12.276</td>
<td>1</td>
<td>.000</td>
<td>0.471</td>
<td>.309 .718</td>
</tr>
<tr>
<td>O-O model: Public^d</td>
<td>0.577</td>
<td>0.192</td>
<td>9.033</td>
<td>1</td>
<td>.003</td>
<td>1.780</td>
<td>1.222 2.593</td>
</tr>
<tr>
<td>O-O model: Private</td>
<td>−0.466</td>
<td>0.185</td>
<td>6.371</td>
<td>1</td>
<td>.012</td>
<td>0.628</td>
<td>.437 .901</td>
</tr>
</tbody>
</table>

[DV: Attend in-services/workshops/courses,^ Individual level data**]**

Province: AB	−0.097	0.165	347	1	.556	0.907	.657 1.253
Province: SK	−1.105	0.206	28.764	1	.000	0.331	.221 .496
Site size: Small	−1.499	0.174	74.395	1	.000	0.223	.159 .314
Site size: Medium	−0.307	0.152	4.072	1	.044	0.735	.546 .991
O-O model: Public	0.178	0.148	1.446	1	.229	1.195	.894 1.599
O-O model: Private	0.858	0.153	31.533	1	.000	2.358	1.748 3.181

df = degrees of freedom
DV = dependent variable
O-O = owner-operator
SE = standard error
Sig. = significance
^a_ Probability (HCA certificate = Yes) was modelled
^b_ Reference group = Manitoba (MB)
^c_ Reference group = Large
^d_ Reference group = Voluntary
^e_ Probability (Attend in-services/workshops/courses = 1) was modelled
workforce educational levels, continuing education opportunity in the workplace, and the presence of clinical education support. Each of these is modifiable and has the potential to improve quality of care for residents and quality of work life for staff in residential nursing homes. Indeed, the recent report concerning retention, recruitment, and expansion of the capacity of this workforce in the OECD countries (Fujisawa & Colombo, 2009) highlighted increasing vocational training and continuing education for non-registered health professionals working in elder care as a promising strategy for retention, recruitment, and enhancement of this workforce.

The following are the strategies, based on our data and others, that will likely have positive results for both residents of nursing homes and their caregivers if implemented:

- Mandatory registries of care aides working in residential long-term care in all provinces, and assurance that registration and training/educational requirements (both initial and ongoing) are sufficiently compatible across provinces to facilitate workforce migration across provincial boundaries.
- Processes whereby a percentage of public funding going to nursing homes is earmarked for training and ongoing education of care aides.
- Inter-provincial cooperation in developing and implementing health human resource plans – designed to ensure that we have adequate numbers of sufficiently trained care aides working with appropriate professional skill mixes in nursing homes to provide care that is not

Table 6: Educational opportunities for care aides by province

<table>
<thead>
<tr>
<th>Individual Level Variable</th>
<th>Province, n (%)</th>
<th>(\chi^2)-test (p value)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alberta</td>
<td>Saskatchewan</td>
</tr>
<tr>
<td></td>
<td>(n = 837)</td>
<td>(n = 208)</td>
</tr>
<tr>
<td>Education [n, (%)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High school</td>
<td>768 (92.1)</td>
<td>192 (92.3)</td>
</tr>
<tr>
<td>Care aide certificate</td>
<td>680 (81.5)</td>
<td>161 (77.4)</td>
</tr>
<tr>
<td>Attend in-services/</td>
<td>413 (49.5)</td>
<td>54 (26.0)</td>
</tr>
<tr>
<td>workshops/courses [n, (%)]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Facility level variable

<table>
<thead>
<tr>
<th>Province, n (%)</th>
<th>Fisher’s exact test(^b) (p value)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alberta</td>
</tr>
<tr>
<td></td>
<td>(n = 15)</td>
</tr>
<tr>
<td>Clinical Educator (Yes)</td>
<td>13 (86.7)</td>
</tr>
</tbody>
</table>

\(^{a}\) \(a, b, \) and \(c \) denote the post-hoc test (multiple comparison) result for AB-SK, AB-MB, and SK-MB respectively (e.g., \(a \) implies that a difference exists between AB and SK).

\(^{b}\) Fisher’s exact test was used because 50% of the cells have expected count less than five.

Table 7: Association between clinical educator and province, size, and owner-operator model (facility-level data)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Clinical educator</th>
<th>Total ((n = 30))</th>
<th>Fisher’s exact test (^a) (p value)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n (= 8))</td>
<td>(n (= 22))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>([n, (%)])</td>
<td>([n, (%)])</td>
<td></td>
</tr>
<tr>
<td>Province</td>
<td>Alberta</td>
<td>Saskatchewan</td>
<td>Manitoba</td>
</tr>
<tr>
<td></td>
<td>2 (25.0)</td>
<td>2 (25.0)</td>
<td>2 (25.0)</td>
</tr>
<tr>
<td>Site size</td>
<td>Small</td>
<td>Medium</td>
<td>Large</td>
</tr>
<tr>
<td></td>
<td>3 (37.5)</td>
<td>4 (50.0)</td>
<td>1 (12.5)</td>
</tr>
<tr>
<td></td>
<td>6 (27.3)</td>
<td>5 (22.7)</td>
<td>11 (50.0)</td>
</tr>
<tr>
<td></td>
<td>8 (35.0)</td>
<td>9 (30.0)</td>
<td>12 (40.0)</td>
</tr>
<tr>
<td>Owner-Operator model</td>
<td>Public</td>
<td>Private</td>
<td>Voluntary</td>
</tr>
<tr>
<td></td>
<td>3 (37.5)</td>
<td>2 (25.0)</td>
<td>3 (37.5)</td>
</tr>
<tr>
<td></td>
<td>5 (22.7)</td>
<td>6 (27.3)</td>
<td>11 (50.0)</td>
</tr>
<tr>
<td></td>
<td>8 (35.0)</td>
<td>8 (30.0)</td>
<td>14 (46.7)</td>
</tr>
</tbody>
</table>

\(^{a}\) Fisher’s exact test was used because 50% of the cells have expected count less than five.
only safe, but at least meets minimum quality standards and, at best, is person-centred and an international exemplar of how care ought to be provided.

- A national discussion that addresses the complex and challenging issue of regulation of this workforce and whether it would contribute to safer and higher quality of care for nursing home residents.

- Special attention to issues of gender – this workforce is overwhelmingly female (e.g., 93% in our sample), as is the informal caregiver workforce (e.g., family members, partners) and the disproportionate and deleterious effects of long-term care on female caregivers are well-known globally (Fredriksen-Goldsen & Bonifas, 2013). However, little evidence exists in Canada or elsewhere that policy planning efforts take gender into account for workforce, service delivery, or other areas.

- Special attention to ethnicity and culture as factors in planning for workforce and service delivery needs. The majority of this workforce is non-Caucasian and multi-lingual, with English not the dominant native language. Further, the care aide workforce in most urban nursing homes is a blend of various cultural, ethnic, and linguistic groups, which is in stark contrast to the majority of baby boomers who were born between 1946 and 1964 and are of western European (predominantly United Kingdom) extraction (Statistics Canada, 2013a, 2013b, 2013c).

Such an ambitious program of reform will require political, administrative, and public will, as well as cooperation across multiple sectors, actors, and groups. However, we are facing rapid increases in the aging population (with accompanying dementia) requiring residential care, with increasing complexity and dependency levels on admission. Admission occurs later in the trajectory of decline, creating much shorter lengths of stay and, consequently, higher levels of resident turnover in the system. All of these factors combine to create a pressing need for consistent and high-quality of life and quality of end-of-life care for these highly vulnerable residents. We must act urgently and with determination.

Strengths and Limitations

While our sample is representative of urban nursing homes in the prairie provinces, we have no assurance that our findings are representative of urban nursing homes in Canada in general, and our care aide sample was not drawn randomly from a known population. We saw provincial differences suggesting that important provincial variations may exist across the country with respect to a number of characteristics. Our findings do not reflect the situation in rural Canada. Although the surveys were completed using in-person structured interviews and a rigorous quality assurance process (Squires et al., 2012), the data are self-reported and therefore subject to the challenges inherent in self-reported data.

Conclusion

At present in Canada, we can offer only a partial and unsatisfying response to the question, “Who is looking after Mom and Dad?” We have an even sparser picture of care aide working conditions, health indicators, and work-life quality indicators – all areas that influence the quality of care. Further research will provide partial information; full information and the necessary initiatives to optimize this workforce will require action on the part of policy makers. We entrust the care of the most complex, frail, vulnerable, and challenging charges in our health and social system to this occupational group of care aides 24 hours a day – inaction is not a rational response.

References

Unregulated Workers in Long-Term Care Homes

Long-Term Care Task Force Ontario. (2012). An action plan to address abuse and neglect in long-term care homes. Ontario, Canada: Long-Term Care Task Force on Residential Care and Safety.

Supplementary Material

To view supplementary material for this article, please visit http://dx.doi.org/S0714980814000506